Mid-Barataria Sediment Diversion River Sampling

Jason Chauvin, PE, MS June 1, 2023

STATE OF THE COAST

- 1. Mid-Barataria Sediment Diversion Project Overview
- 2. River Sampling Overview
- 3. Sampling Tasks and Equipment
- 4. Scope of Work / Execution
- 5. Analysis and Results

MID-BARATARIA SEDIMENT DIVERSION PROJECT OVERVIEW

Owner: State of Louisiana Coastal Protection and Restoration Authority (CPRA)

- Cost: 2.9 Billion (includes E&D, Construction, Mitigation)
- **Funding:** National Fish and Wildlife Foundation (NFWF) 2010 Deepwater Horizon settlement

Goal: Divert sediment from the MS River to build land in the Barataria Basin

MID-BARATARIA SEDIMENT DIVERSION PROJECT OVERVIEW

Diversion Features:

• Intake

- Intake structure
- Gates
- Transition channel
- Conveyance
 - 2 mile conveyance channel and guide levees
- Discharge
 - Outfall transition feature

Operation:

- Base flow: 5,000 cfs (MR at 450,000 cfs)
- Maximum flow: 75,000 cfs (MR at 1,000,000 cfs)

RIVER SAMPLING OVERVIEW

<u>Goals</u>

- Understand the sediment load in the Mississippi River (suspended sediment & bedload)
- Optimize design of the diversion and develop an operation plan.

<u>Means</u>

- Hydrodynamic modeling (FTN)
- Physical modeling (Alden Lab)

Data Collection (Model Validation)

- MS River discharge
- Suspended sediment concentration, character, and load
- Bed sediment grain size
- Bedload transport (multibeam survey)
- Batture sediment sampling

RIVER SAMPLING TEAM

AECOM

- DELTA LAND SERVICES integ
- ✓ Design team lead
- ✓ Management & coordination of field activities
- ✓ Multibeam surveys
- ✓ Field support for point sampling, bed grabs, and ADCP
- ✓ Batture bed grabs
- ✓ Data processing & deliverables
- ✓ ADCP transects, CTD test, and suspended sediment samples
- ✓ Lab testing
- ✓ Coordination of field activities
- Provided direction on data needs to support modeling

✓ QC Support

SAMPLING EQUIPMENT

Operator	Vessel Name	Data Collection	Equipment	Field Days Required
	S/V Pallid Sturgeon	Isokinetic point samples of water and suspended sediment	P-6-200	2
		Sediment bed grab	Wildco Shipek	
TBS / DLS		ADCP transect for water discharge	Workhorse Rio Grande ADCP SBE 19plus Seacat	
		Stationary ADCP for suspended sediment calibration		
		CTD profile casts		
TBS	N/A	Batture grab sample collection	Modified Push Core Sampler	1
TBS	M/V Echotrac M/V Surveyor 7	Multibeam bathymetry grids for bed load transport calculations	Sonic 2024 Sonic 2020	2 to 4

Shipek

CTD

FIELD PICTURES

FIELD PICTURES

BATTURE BED GRABS

RIVER SAMPLING EVENTS

Event	Date	Target Belle Chase (cfs)	Actual Belle Chase (cfs)
#1	May 13-14, 2020	1,000,000	1,080,000
#2	June 1-2, 2020	900,000	914,000
#3	June 29-30, 2020	700,000	652,000

SAMPLING LOCATIONS – ALLIANCE POINT BAR

Sampling Objectives

- Acoustic Doppler Current Profiler (ADCP) Transects
 - 2 Transects
- Isokinetic Sampling
 - 56 Samples w/ stationary ADCP
- Grab Sampling River
 - 8 Samples
- Conductivity, Temperature, Depth (CTD) Cast
 - 8 Casts

SAMPLING LOCATIONS – PHOENIX / MYRTLE GROVE POINT BAR

Sampling Objectives

- Acoustic Doppler Current Profiler (ADCP) Transects
 - 5 Transects
- Isokinetic Sampling
 - 80 Samples w/ stationary ADCP
- Grab Sampling River
 - 10 Samples
- Grab Sampling Batture
 - 5 samples
- Conductivity, Temperature, Depth (CTD) Cast
 - 10 Casts
- Multibeam Grids
 - 6 grids surveyed 2 times, 24 hrs apart

ANALYSIS: SUSPENDED SAND CONCENTRATION

Space

100

0

200

300

400

Cross Channel Distance (m)

- Stationary ADCP
 - Water Corrected Backscatter
 - Converted from beam intensity and corrected for water effects
 - Averaging
 - Spatial-temporal averages calculated for each isokinetic sample
- Suspended Sediment
 - Regression analyses
 - Sand concentration paired with averaged ADCP backscatter
 - Develop exponential regression curves
- ADCP Transects
 - Suspended sand cross sections
 - Use regression curves to convert ADCP transects to suspended sand concentration ٠

 $WCB = MB + 20\log_{10}R + 2\alpha_w R$ Ramirez and Allison, 2013

500

600

700

0

ANALYSIS: SUSPENDED SAND CONCENTRATION (EVENT 1)

CI 033		IVIAAIIIIAIII	Average
Section ID	(mg/L)	(mg/L)	(mg/L)
AT1	3.47	291.65	50.01
AT2	3.13	271.49	53.06
PT1	3.54	387.65	46.04
PT3	11.58	313.37	67.79
PT5	3.36	338.11	87.05
PT5	5.18	284.65	66.64

ANALYSIS: SUSPENDED SAND CONCENTRATION (EVENT 2)

Cross	Minimum	Maximum	Average
Section ID	(mg/L)	(mg/L)	(mg/L)
AT1	4.50	115.45	28.17
AT2	4.26	126.78	29.09
PT1	5.36	140.53	22.67
PT2	4.17	108.38	28.24
PT3	6.12	114.06	31.85
PT4	4.99	164.28	34.92
PT5	4.96	134.50	35.82
PT5	4.74	156.52	35.05

ANALYSIS: SUSPENDED SAND CONCENTRATION (EVENT 3)

Cross	Minimum	Maximum	Average
Section ID	(mg/L)	(mg/L)	(mg/L)
AT1	1.97	82.82	12.97
AT2	1.85	88.15	12.30
PT1	2.21	58.23	9.01
PT2	2.17	28.01	9.25
PT3	3.05	44.95	10.05
PT4	3.04	27.44	9.96
PT5	2.08	26.37	10.37

ANALYSIS: BEDLOAD

• Multibeam

- Polygon Analysis Areas
 - Draw analysis areas based on dune wavelength
 - Count sand dunes for each day
- Elevation Change
 - Calculate difference maps for each grid
- Sediment Flux
 - Assess volumetric change over time to develop cross sectional bed load flux

— Raster_Layers_E1_D1_IDW_CLIP — Raster_Layers_E1_D2_IDW_CLIP

CONCLUSION

- Suspended sediment cross sections and bedload sediment flux data were input into the numerical and physical models.
- Model outputs were used to optimize the design of the diversion and develop an operation plan.

Special Thanks:

- Brad Barth CPRA
- Bruce Lelong AECOM
- Ranjit Jadhav FTN
- Agnimitro Chakrabarti FTN
- Dan Gessler Alden Lab
- Brock Vosburg Delta Land Services
- Mead Allison Tulane
- Lane Simmons USGS
- Kevin Beyer Intracoastal Consultants
- Ben Roth Intracoastal Consultants
- Denton Graham T. Baker Smith

