

WAVES AND WATER LEVELS IN THE BACKBARRIER SEAGRASS MEADOWS OF THE CHANDELEUR ISLANDS

Presented by: Francesca Messina (Ioannis Georgiou)

State of the Coast Thursday, May 22 9:30 – 11:00 a.m. Room 284

MOTIVATION

Seagrass(es) meadows attenuate waves and slow currents (C_D drag coefficient, type, density, height, diameter, shape, bendiness...)

Research mostly theoretical, from flume studies, fewer field observations

Open questions and research gaps

- Site specific wave attenuation studies (targeting species...)
- Parameters influencing sediment mobility within meadows (e.g. shear stress; waves and currents)
- Physical thresholds of establishment or mortality
- · Local subtidal water levels, waves, and dataset used for modeling

EXPERIMENTAL DESIGN - DEPLOYMENTS

- Period Oct 2 Dec 2, 2024
- RBRs recovered during the field visit on December 2, 2024
- Burst sampling, at 16 Hz, every 20 minutes, burst duration ~10 minutes (~8192 samples/burst)
- Wave statistics processing (Wiberg and Sherwood, 2018)

RBR are wave and water level loggers (Water Institute) **TCM** are Tilt Current Meters (U. of Southern Mississippi)

EXPERIMENTAL DESIGN - SITE SELECTION

- Similar depth + seagrass (1 to 3; W to SE)
 - Approximate depth of ~1.6 m
- Decreasing depth + seagrass (1 to 2; W to E)
 - Approximate depth of ~1.6 m to 0.6 m

RESULTS - WATER LEVELS

RESULTS - WATER LEVELS

RESULTS - WATER LEVELS

Key takeaway:

Water level excursions at the Chandeleurs are approximately half of those observed near the coast. An ~60 cm setdown from a large event on the coast, produced a ~30-35 cm setdown on the Island.

RESULTS - WAVES

Key takeaway:

Waves at the outer station **exceed 40 cm**, while waves inland reach **20 – 25 cm**.

Waves vary with depth (strong tidal and subtidal control)

WAVE ATTENUATION ACROSS MEADOWS

Wave attenuation by seagrasses alone during the larger storm event, when water levels declined swiftly varied from 30 - 60%.

WAVE ATTENUATION ACROSS MEADOWS

Wave attenuation by seagrasses plus reduction in depth during the larger storm event, when water levels declined swiftly varied from 30 - 100%.

SUMMARY OF WAVE ATTENUATION

SUMMARY OF WAVE ATTENUATION

KEY TAKEAWAYS - WAVES

 Waves throughout the seagrass meadows are controlled by water depth, local wind speed, and incoming wave energy.

 Locally generated waves are small (~10-15 cm) but can reach 20 cm

Incoming waves from the exposed directions can exceed
~40 cm during these more energetic events.

KEY TAKEAWAYS - WAVE ATTENUATION

- Wave attenuation is on average
 - ~ 35% (± 15%) over seagrasses alone,
 - ~ 46% (± 35%) both seagrasses and a change in water depth.
- Smaller waves attenuate more compared to larger waves
- The seagrass meadows exhibit dynamic behavior
- Depth, in addition to the presence/absence of seagrasses, can dynamically modulate waves in more sheltered and shallower regions of the meadows.

THANK YOU

Ioannis Y. Georgiou