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Outline

 Coastal storm risk management (CSRM) projects and vulnerability to
compound flooding

 Types of compound flooding fluvial/surge, pluvial/surge,
pluvial/overtopping/surge

» Quantifying rainfall and surge for TCs and ETCs now and in the future
with climate change — Office of Naval Research Pilot study at Patuxent
River Naval Air Station on Chesapeake Bay

* Modeling surge, waves, river discharge and rain on grid

* Bivariate analysis of compound flood with data only and with synthetic
storms



Flood Risk Reduction Projects Leading to Bathtub Conditions
New York-New Jersey Harbor and Tributaries Study (NYNJHATS)

» The HATS study by the U.S. Army Corps of Engineers evaluates flood risk management for the NY-
NJ harbor area.
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Compound flood can potentially increase flood risk

* Will need to store or
pump out rainfall runoff
(pluvial)/fluvial discharge
behind barriers

« Compound flood risk may
increase with climate <7
change (particularly NEL 5 Storm surge
where TCs become more
frequent/intense)

» Dependency between
rainfall and non-tidal
residual increases the
frequency of compound
flood conditions by 2.5 to
3 times, or greater
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Takeaways for now,

« Compound flood is important to consider for design of flood risk
reduction projects involving levee/berm-floodwall-gates-pump stations,
and those types of projects are becoming more prevalent

* Independent assumptions for compound flood are non-conservative
and a full dependency assumption is extremely over conservative

* Dependency is found with TCs at most locations (if not all) and this
dependency may be increasing with time through increased
frequency/intensity of TCs

* The TC record is too short to robustly evaluate statistics of compound
flood

» Dependency for ETCs is unusual and site specific



Coastal Flood Risk Assessment
Patuxent River Naval Air Station

» Develop/improve methods to quantify coastal flood risk for the naval
air base considering changes to storminess.
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Compound Modeling Workflow

Reanalysis Datasets/CMIP6 data

Provides boundary & initial conditions

Weather Models

Downscaled Rainfall,
Pressure, Surface Winds

Compound Flood Multiscale Models

Flood levels, Velocities etc.
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Overall Patuxent River Project Approach for ONR

 Four GCMs used for CMIP6 SSP585 and SSP126 Scenarios for mid-
and late 21st century periods.

* Produced single compound flood model (TELEMAC+TOMAWAC) to
simulate: rainfall flooding, riverine flooding, tides, storm surge, wave
setup, and flooding/drying.
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Fig. 2 Flowchart with the extracted IBTrACS tropical cyclone (TC) characteristics (stage 1; in blue), the
STORM components (stage 2; in red), and the creation of the synthetic tropical cyclones (stage 3; in green).
Round boxes represent input data, square boxes represent the methodological steps taken to process this input
data, and hexagonal boxes represent the output data.
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Figure 6: Developed synthetic tropical cyclone tracks using the CNRM GCM for the late 21st Century in the SSP585 scenario
for a period of 7,000 years. The color of the track indicates minimum sea level pressure along the track.




STORM and the CMCC-CM2-VHR4
Delta Approach for NS
Synthetic Tracks in

the Future
(Bloemendaal et al 2022)
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Historic ETC Detection
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Figure 10: ETC detection illustration. Top panel shows the time series of the NAO and SOl indices. Bottom panel shows the
number of identified ETC events per year identified via the storm windowing approach.




Future ETCs with Climate Change
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Figure 8: High level overview to generate synthetic ETC cyclones using the PGW approach.
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Weather Research Model (WRF) Application
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Apply Hydrodynamic-Wave Model
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TELEMAC-TOMAWAC Model Domain and Mesh
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Number of Storms Simulated

Number of Synthetic Storms

Scenario Period

Historical CNRM NORESM HADGEM MPI
Historical (1979-2022) 997 . - . -
T Mid-21% - 696 999 792 968
Late 21% - 1,000 998 1,000 951
— Mid-21% - 994 832 986 810
Late 21 - 999 602 997 977 Total
Total 997 3,689 3,431 3775 3,706 15,598

Number of Synthetic Storms

Scenario Period

Historical CNRM NORESM HADGEM MPI
Historical (1979-2022) 383 - - - .
—— Mid-21% - 383 383 - -
Late 21% - 383 383 - -
o Mid-21% - 383 383 - -
Late 21% - 383 383 . . Total

Total 383 1,532 1,532 0 0 3,447




Results

 Evaluation of compound flood with recorded and reanalysis data
(NOAA and AORC) — TCs show dependence but too few

 Analysis with synthetic TCs alone to evaluate compound flood




Data Gathering for Data-based Bivariate analysis

» Require a long time series of water levels & daily accumulated rainfall
(collocated as closely as possible)
» Nearby NOAA gages
 Analysis of Record for Calibration (AORC)

» Require Hurricane track data to determine if storms are tropical or non-
tropical
« HURDAT?2




Dependence
Analysis Plot

Tau>0.21t0 0.3
shows dependence
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Tau Correlations - TC Peaks (Measured Data)
NTR (Water level) -Conditioned

Scatter plot of Non-Tidal Residual vs 24h Precipitation - TC
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Existing (synthetic data)

Water Level Rainfall
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Late Century

Water Level

Free Surface vs (24 hr)
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Rainfall (mm)

Late Century

Water Level — 24 hr
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Acc. Rainfall (24-hr) (mm)

Copula Plots from Bivariate Analysis for Compound Probability

Synthetic TCs Existing
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Predicted Change in 100-yr Return Period Water Levels and

Waves from Existing to Late Century

100 Year Return Period for Difference between Late and Existing Free Surface
Storm Type: TC, Total Number of Storms: 1995
Number of Years: 6979
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Thank you for listening...

Baird.

This work is supported by the US Navy, Office of Naval Research (ONR), project N00014-23-C-2010. and Binera
We'd like to thank ONR: Mr. Daniel Eleuterio, Ph.D., Allison Penko, Ph.D., and NAS PAX River: Mr. Lance McDaniel, Alec Young




