

Determining vegetation establishment thresholds with custom-built sensors

Madeline Foster-Martinez¹, **Abby Eckland (presenting)**¹, Vitalii Sheremet², & Jenneke Visser³

Funding: Louisiana Center of Excellence Research Award (RFP3)

- L. University of New Orleans, New Orleans, LA, USA
- 2. OkeanoLog, North Falmouth, MA, USA
- B. University of Louisiana at Lafayette, Lafayette, LA, USA

Vegetation is critical for the establishment and maintenance of wetlands

- Vegetation influences hydrodynamics and sedimentation
- Belowground roots strengthen the soil surface, reducing erosion
- Wetland surface aggrades with sediment and organic matter

Established plants are less sensitive to the conditions required for their initial establishment

- Seeds are dispersed through physical processes to bareground areas
 - Must be left relatively undisturbed to germinate and establish
- This sequence is known as a window of opportunity

Physical conditions that influence vegetation establishment in coastal Louisiana are:

- Water depth and its variability
- Duration of inundation
- Wave activity
- Salinity
- Microtidal (0.3m), diurnal tides control water levels while larger variations are driven by wind and pressure systems, and river floods

Physical conditions that influence vegetation establishment in coastal Louisiana are:

- Water depth and its variability
- Duration of inundation
- Wave activity
- Salinity

Thresholds?

Microtidal (0.3m), diurnal tides control water levels while larger variations are driven by wind and pressure systems, and river floods

Physical conditions that influence vegetation establishment in coastal Louisiana are:

- Water depth and its variability
- Duration of inundation

Thresholds?

We need to identify **thresholds for vegetation establishment** to accurately forecast **land building** within a **modeling framework**.

variations are driven by wind and pressure systems, and river floods

We focus on the physical conditions that influence vegetation establishment in emerging wetlands

- Previous research references inconsistent elevation and tidal datums, so findings are not comparable
- Shallow nature of these environments (-10 cm below MSL) makes field investigations difficult
- Need for a new approach

Our approach is rooted in field measurements to capture the process of vegetation establishment *in-situ*

Dry conditions

Inundated conditions

Custom-built
water level
loggers deployed
in a shallow
mudflat

Primary goal is to measure inundation time, water level a bonus

We use low-cost water level loggers to continuously monitor inundation trends

- Pendant G Acceleration Data Logger (\$115, waterproof)
 - > \$230 total per logger (includes sensor, housing, and deployment materials)
- Low cost enables numerous loggers to be deployed at a single site (~15), giving high spatial coverage along elevation gradients

Water level and inundation time are calculated via the raw logger and RTK elevation data

$$H = Xg * R + dH + HPivot$$

Where:

- H Water level above NAVD88
- Xg Raw output from the logger sensor (Xg = (X*g)/g)
- *R* Arm length
- dH Small correction to account for difference between water level and center of the ball
- HPivot Elevation of the pivot center above NAVD88

Our intensive field campaign at 3 highly targeted sites will record:

- 1. Environmental conditions (duration of inundation, water depth, wave activity)
- 2. Site characteristics (soil strength, sediment texture)

3. Vegetative species

We focus on aggrading parts of the delta: Wax Lake Delta and Bay Uhlan

We focus on aggrading parts of the delta: Wax Lake Delta and Bay Uhlan

Logger data from the highest and lowest elevation stations along a transect at **Bay Uhlan**

Logger data from the highest and lowest elevation stations along a transect at **Wax Lake Delta**

Ongoing and future work

- Conduct monthly vegetation surveys once Mississippi River discharge subsides
- Add a CPRA marsh creation site to our investigation once pumping of dredged material is complete (this summer)
- Collected short (10 cm) sediment cores and will process them to obtain grain size distributions and organic matter content
- Deployed ceramic tiles to monitor sediment accretion, to be measured quarterly
- Deployed instruments to continuously monitor wave activity, salinity, and temperature to further characterize site conditions that influence vegetation establishment

Thank you! Questions?

Presenting: Abby Eckland, PhD

Email: aeckland@uno.edu

Funding: Louisiana Center of

Excellence Research Award (RFP3)

