

Carbon sequestration response to chronic saltwater intrusion in a coastal marsh in Louisiana

Jorge A. Villa¹, Claire Brovold², Raphael Gottardi³, Davide Oppo¹, Brian Schubert¹

¹ School of Geosciences, University of Louisiana at Lafayette. Lafayette, LA

² Department of Environmental Sciences, Center for Marine Science, University of North Carolina Wilmington Wilmington, NC

³ Department of Geosciences, Auburn University. Auburn, AL

CARBON SEQUESTRATION

estimated carbon stock of

10 billion tons.

C uptake into plant tissue via photosynthesis

C released through decomposition

 CO_2

CARBON SINK -> CARBON SOURCE

(CPRA, 2023)

Faulting in Louisiana can result in up to 20 mm/yr of subsidence. (Yuill et al., 2009)

TECTONICS: FAULTING

How does organic matter and carbon sequestration respond to flooding in faulted coastal landscapes?

STUDY AREA

Intermediate salinity wetlands: 0.5 - 5 ppt

ntroduction Research question <mark>Methods</mark> Results Conclusions

HURRICANE RITA

Intermediate salinity wetlands: 0.5 - 5 ppt

March of 2006: up to 17.9 ppt (Steyer et al., 2005)

SAMPLING LOCATION

- 1.) Phragmites australis
- 2.) Spartina patens
- 3.) Schoenoplectus californicus

SAMPLING LOCATION

Downthrown plant species:

- Alternanthera philoxeroides
- Myriophyllum spicatum
- Salvina molesta
- > Brasenia schreberi

PLANTS COLLECTED

 $(\delta^{13}C\%_0, photosynthetic pathway)$

Emergent Vegetation

-26.77 ‰, C₃

California Bulrush
Schenoplectus californicus

-27.60 ‰, C₃

Phragmites
Phragmites australis

-13.80 %₀, C₄

Spartina
Spartina patens

Submerged / Floating Vegetation

-29.61 %₀, C₃

Alligator Weed
Alternanthera philoxeroides

-27.85 %₀, C₃

Watershield Brasenia schreberi

-28.85 %₀, C₃

Giant Salvinia
Salvinia molesta

-16.43 %₀, INT

Eurasian Water-Milfoil *Myriophyllum spicatum*

SAMPLE COLLECTION & PREPARATION

core

core & plant drying

core & plant milling

- ✓ Bulk Density
- √ C & N concentration
- $\checkmark \delta^{13}C$
- ✓ ²¹⁰Pb activity (dating & accretion rates)

- ✓ BD was higher on the downthrown side of the fault and lower on the upthrown side.
- ✓ %C was lower on the downthrown side of the fault and higher on the upthrown.
- \checkmark $\delta^{13}C$ did not change on the downthrown side of the fault.
- ✓ C sequestration becomes more variable and has a relatively lower median value in the downthrown than in the upthrown.

REFRENCES

- Coastal Protection and Restoration Authority of Louisiana. 2023. Louisiana's Comprehensive Master Plan for a Sustainable Coast. Coastal Protection and Restoration Authority of Louisiana. Baton Rouge, LA.
- 2. Howard, J., Sutton-Grier, A., Herr, D., Kleypas, J., Landis, E., Mcleod, E., ... & Simpson, S. (2017). Clarifying the role of coastal and marine systems in climate mitigation. *Frontiers in Ecology and the Environment*, 15(1), 42-50.
- 3. Steyer, G. D., Perez, B. C., Piazza, S., & Suir, G. (2005). Potential consequences of saltwater intrusion associated with Hurricanes Katrina and Rita. *Science and the storms: the USGS response to the hurricanes of*, 137-146.
- 4. Yuill, B., Lavoie, D., & Reed, D. J. (2009). Understanding subsidence processes in coastal Louisiana. Journal of Coastal Research, (10054), 23-36.

Thank you!

This work was possible thanks to the University of Louisiana's South-Louisiana Mid-Winter Fair Association | BORSF Endowed Professorship (Villa), the Larry Hensarling & Roger Chapman Endowed Professorship (Gottardi), the Pioneer Production Endowed Professorship (Oppo) and the Jack and Gladys Theall/BORSF Endowed Professorship (Schubert). Also support from the U.S. Department of Energy (DE-SC0022972)