

QUANTIFYING SPATIAL AND TEMPORAL UNCERTAINTY IN LOUISIANA'S COASTAL CARBON

Shawn Doyle

sdoyle@thewaterinstitute.org

Co-Authors: Hoonshin Jung, Tim Carruthers

5/22/2025

Quantifying Net Carbon Flux

Current unknowns under a changing landscape

Current Assumptions and Uncertainties

How much CO₂ is captured each year by plants?

ANPP: Aboveground net primary productivity

Varies over space and time

species composition
soil nutrients
temperature
precipitation
hurricanes/storms
freeze events

What happens to plant biomass?

After conversion to open water, all the aboveground biomass is assumed to die.

What is the fate of stored soil carbon stocks?

After conversion to open water, the **top ~1 m** of soil erodes.

How much soil carbon is being eroded?

Assumption

The top 1m of soil stores ~189 years of accumulated soil carbon

Baustian et al. 2021

Uncertainty in methane emissions

Habitat	CH ₄ and N ₂ O flux (tons CO ₂ e ha ⁻¹ y ⁻¹)
Fresh forested wetland	24.6 ± 24.1
Freshwater marsh	29.6 ± 33.58
Intermediate marsh	29.6 ± 33.58
Brackish marsh	5.9 ± 6.3
Saline marsh	3.8 ± 9.3
Mangroves	9.6 ± 20.0

How much soil carbon accumulates annually in open water habitats?

On average, open water habitats accumulate 8.0 ± 0.7 tons CO₂e ha⁻¹ per year.

Not all open water areas are the same.

Open bays, semienclosed bays, tidal creeks, paleo-distributary channels

Modeling Coastal Carbon Flux

Landscape and Habitat Changes

- Delft3D-FM with coupled hydrodynamic, morphology, and waves models
- Vegetation predicted with LAVegMod.PF
- Assumed RSLR: 0.25m by 2025 (Scenario S07-RCP 4.5)
- Subsidence rates derived from LACMP 2023
- 27 synthetic tropic storm events

Net carbon flux using current assumptions

Which areas of uncertainty—<u>if</u>

<u>reduced</u>—would yield the highest return in developing a viable blue carbon market???

Net carbon flux using minimal assumptions

Instead of using a single, assumed value for each parameter (i.e. the average flux per habitat), we will allow each parameter to take any value within a distribution or range.

How do we calculate thousands of parameter possibilities across tens of thousands of grid cells?

Computationally expensive!

Extended Fourier Amplitude Sensitivity Test (eFAST)

Step 1: Create periodic search curves for each parameter.

$$x_i = F_i^{-1} \left(\frac{1}{2} + \frac{1}{\pi} \arcsin(\sin(\omega_i s)) \right), \quad -\pi \leqslant s \leqslant \pi,$$

Step 2: The carbon flux calculation, which had *dozens* of parameters, now has *one* parameter (s). Carbon flux can now be repeatedly calculated across thousands of input possibilities *efficiently*.

Extended Fourier Amplitude Sensitivity Test (eFAST)

Adopting modern languages such as Julia offers the potential for a dramatic increase in speed over more traditional options like R or Python

120,000 module iterations

≈ 30 to 45 days

a) 2020

2. Improving accurate maps of vegetation

beneficial.

Intermediate Marsh

Methane and N₂O emissions uncertainties are overwhelmingly dominant.

Brackish Marsh

- ANPP uncertainty is dominant, especially near term.
- Land loss uncertainties begin to creep in over time.
- Importance of methane uncertainties fall off dramatically

Saline Marsh and Mangroves

- ANPP uncertainty also dominant over short timeframes.
- Land loss drivers become dominant over long timeframes.
- Near-term, methane uncertainties are important, but not dominant. Drop off over time.

TAKE AWAYS

<u>Uncertainty Varies:</u> The importance of different sources of blue carbon uncertainty (e.g., vegetation productivity, CH₄ emissions, soil carbon loss) significantly changes based on wetland type, salinity, and the spatial and temporal scale of your project.

Key Uncertainties Shift: Short-term net carbon flux estimates are most impacted by uncertainties in annual plant productivity (ANPP) and CH₄ emissions. Over decades, however, uncertainty around carbon released from coastal land loss becomes dominant.

Strategic Research Needs: To make blue carbon projects viable, especially in dynamic wetlands, research must focus on high-resolution vegetation mapping, better quantifying methane/nitrous oxide variability, and improving models for soil carbon changes during land loss.

<u>Targeted Efforts Maximize Impact:</u> Addressing all uncertainties isn't always practical; Blue carbon research and monitoring should be focused to where it will most effectively reduce uncertainty.

THANK YOU

Shawn Doyle sdoyle@thewaterinstitute.org

