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Background 2022: LA Climate Initiative Task Force 
Climate Action Plan identifies 
wetlands as avenue for reaching 
carbon neutrality and acquiring 
carbon credits

CPRA funded the Water Institute 
(TWI) to develop carbon benefits 
estimator based on scenario-based 
habitat distributions projected from 
CMP modeling.  

Algorithms from the carbon estimator are 
being incorporated into CPRA’s Integrated 
Compartment Model (ICM) to run 
scenarios of Future-with and –without 
CMP projects to output net ecosystem 
carbon balance (NECB) estimates. 

We can use data from the ICM 
model outputs to estimate the 
potential carbon credits earned 
from restoration project 
implementation. 
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Utilizing Master Plan Modeling
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Implementing Master Plan Projects 
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Dike Construction 
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1st order accounting 

Diesel Consumption Rate

TE-138

Dredging (18") 0.22 gal/yd^3

Dike 1.24 gal/LF

BA-171 Dredging (30") 0.17 gal/yd^3

PO-75 Dredging  (30") 0.09 gal/yd^3

Carbon Emissions Rate

TE-138

Dredging (18") 2.26 kg CO2/ yd^3 sed

Dike 12.63 kg CO2/ yd^3 sed

BA-171 Dredging (30") 1.72 kg CO2/ yd^3 sed

PO-75 Dredging  (30") 0.91 kg CO2/ yd^3 sed

Diesel Combustion 
Rate 

10.21 kg CO2 / gal 



TE-138 Lake Decade MC

Dike

MT/LF 0.01 

LF 34301

TOTAL 1,022.56 

Dredge

MT/CY 0.002 

CY 2,250,454.00 

TOTAL 5,075.67 

Construction CO2 
Emissions

6,098 MT 

Marsh Class: Intermediate

Project Acres: 473 acres

Surface Soil C: -3,350 MT

1st ORDER PROJECT NET C

Net C 2748 MT



BA-171 Caminada Back Barrier Headlands

Dike

MT/LF - 

LF -

TOTAL -

Dredge

MT/CY 0.0017 

CY 2,151,196.00 

TOTAL 3,705.89 

Construction CO2 
Emissions

3,706 MT 

Marsh Class: Saline

Project Acres: 928 acres

Surface Soil C: -8,516 MT

1st ORDER PROJECT NET C

Net C -4,810 MT



PO-75 LaBranche East MC

Dike

MT/LF - 

LF -

TOTAL -

Dredge

MT/CY 0.0009

CY 6,658,106.00 

TOTAL 6,028 

Construction CO2 
Emissions

6,028 MT 

Marsh Class: Saline

Project Acres: 473 acres

Surface Soil C: -10,036 MT

1st ORDER PROJECT NET C

Net C -4,008 MT



Conclusions  

• Potential for some marsh creation projects to generate carbon credits

• Estimating carbon emissions from project construction require tedious 
accounting of diesel consumption

• Other considerations play large role in diesel consumption
• Larger polygons + consistent dredge operations =  ↑ efficiency = ↓ emmissions
• Source material 
• Pump distance 

• Current data sets are enough for 1st order estimates, but may not be 
sufficient for accreditation – need clarification from accreditors
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Conceptual Carbon Budget Model for the ICM

Carbon budget for an ICM wetland pixel* i, from year t to t+1
Above-ground carbon pool, AGpoolt,i [tonnes CO2e]:
 AGpoolt+1,i = AGpoolt,i + ANPPt,i ∆t+ AGlosst-t+1,i

Below-ground carbon pool in top 1-m of soil, BGpoolt,i [tonnes CO2e]:
 BGpoolt+1,i = BGpoolt,i + SoilACt,i ∆t + BGlosst-t+1,i

Carbon flux from an ICM wetland pixel i, between years t and t+1
Net carbon flux, Cfluxt-t+1,i [tonnes CO2e / yr]:
Sign convention for flux equation is positive values are emitted into atmosphere.
 Cfluxt-t+1,i = GHGfluxt,i + [ GHGchanget-t+1,i – (AGpoolt+1,i – AGpoolt,i) - (BGpoolt+1,i – BGpoolt,i) ]/∆t 

Lookup variables based on vegetation cover (FFIBS) of ICM wetland pixel, i
Above-ground net primary productivity rate, ANPPt,i [tonnes CO2e / yr]:
 ANPPt,i = f(FFIBSt,i)
Above-ground biomass loss due to vegetative cover change between years t and t+1, AGlosst-t+1,i [tonnes CO2e]:
 AGlosst-t+1,i = f(FFIBSt,i , FFIBSt+1,i)
 example of AGloss would be the biomass loss when swamp forest dies and leaves ghost trees behind 

Below-ground soil carbon accumulation rate, SoilACt,i [tonnes CO2e / yr]:
 SoilACt,i = f(FFIBSt,i)
Below-ground carbon loss due to vegetative cover change between years t and t+1, BGlosst-t+1,i [tonnes CO2e]:
 BGlosst-t+1,i = f(FFIBSt,i , FFIBSt+1,i)
Greenhouse gas emissions rate from wetland processes for year t, GHGfluxt,i [tonnes CO2e / yr]:
 GHGfluxt,i = f(FFIBSt,i)
Greenhouse gas emissions from land/cover change processes from year t to t+1, GHGchanget-t+1,i [tonnes CO2e]:

 GHGchanget-t+1,i = f(FFIBSt,i , FFIBSt+1,i)
 example of GHGchange would be the GHG emissions from project construction (e.g., diesel for dredging)

 

* Note that this is currently a carbon budget solely for 
wetland pixels – there is currently no framework for 
handling carbon in water bodies. Nor is there any 
mechanism for carbon flux from soil to water; all 
fluxes are currently assumed to be atmospheric.
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