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2022: LA Climate Initiative Task Force
Climate Action Plan identifies
wetlands as avenue for reaching
carbon neutrality and acquiring

carbon credits L OUISIANA \ 1

(TWI) to develop carbon benefits
estimator based on scenario-based

habitat distributions projected from
CMP modeling.
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Algorithms from the carbon estimator are
being incorporated into CPRA’s Integrated
Compartment Model (ICM) to run
scenarios of Future-with and —without
CMP projects to output net ecosystem
carbon balance (NECB) estimates.
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We can use data from the ICM
model outputs to estimate the
potential carbon credits earned
from restoration project
implementation.










Utilizing Master Plan Modeling
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Implementing Master Plan Projects
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Dike Construction

Equation 1: Dike,,,, = >((vessel
days)*(fuel volume/vessel
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conversion)) ...
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Dikegjiq
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15t order accounting

Diesel Consumption Rate
Dredging (18") 0.22[ gal/ydn3
1.24 gal/LF

Dredging (30") 0.1 gal/ydn3

Dredging (30") 9 gal/yd"3

Diesel Combustion
Rate
10.21 kg CO2 / gal

Carbon Emissions Rate

Dredging (18") .26 kg CO2/ yd"3 sed

12.63| kg CO2/ yd"3 sed

Dredging (30") 1.72] kg CO2/ yd"3 sed

Dredging (30") kg CO2/ yd~3 sed



E-138 Lake Decade MC

1,022.56
0002
2,50,454.00

TOTAL 5,075.67

Constrt'Jct.lon C02 6,098 MT
Emissions

Marsh Class: Intermediate

1°* ORDER PROJECT NET C

Net C 2748 MT

Surface Soil C: l -3,350 MT
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Emissions 3,706 MT
1t ORDER PROJECT NET C
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Marsh Class:

Project Acres: 928

Surface Soil C: -8,516




PO-75 LaBranche East MC

1°t ORDER PROJECT NET C

Marsh Class: Saline

Surface Soil C: -10,036




Conclusions

* Potential for some marsh creation projects to generate carbon credits

* Estimating carbon emissions from project construction require tedious
accounting of diesel consumption

e Other considerations play large role in diesel consumption
 Larger polygons + consistent dredge operations = T efficiency = | emmissions

e Source material
* Pump distance

e Current data sets are enough for 15t order estimates, but may not be
sufficient for accreditation — need clarification from accreditors
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Conceptual Carbon Budget Model for the ICM

Carbon budget for an ICM wetland pixel* i, from year t to t+1 * Note that this is currently a carbon budget solely for

Above-ground carbon pool, AGpool, ; [tonnes CO,]: wetland pixels — there is currently no framework for
AGpool,,, ;= AGpool,; + ANPP; At+ AGIOSS, ..., handling carbon in water bodies. Nor is there any

Below-ground carbon pool in top 1-m of soil, BGpool, ; [tonnes CO,_]: mechanism for carbon flux from soil to water; all
BGpool,,; ;= BGpool,; + SoilAC,; At + BGl0sS, ., fluxes are currently assumed to be atmospheric.

Carbon flux from an ICM wetland pixel i, between years t and t+1
Net carbon flux, Cflux, ..., ; [tonnes CO,, / yrl:

Sign convention for flux equation is positive values are emitted into atmosphere.
Cflux,,,; ;= GHGflux,; + [ GHGchange,.,, ;— (AGpool,,; ;— AGpool, ;) - (BGpool,,, ;— BGpool, ;) ]/At

Lookup variables based on vegetation cover (FFIBS) of ICM wetland pixel, i

Above-ground net primary productivity rate, ANPP, ; [tonnes CO,, / yr]:
ANPP, ; = f(FFIBS, ;)

Above-ground biomass loss due to vegetative cover change between years t and t+1, AGloss,.,,,; [tonnes CO,.]:
AGloss, .. ;= f(FFIBS,,, FFIBS,,, )

Below-ground soil carbon accumulation rate, SoilAC, ; [tonnes CO,, / yr]:
SOilAC,; = f(FFIBS, )

Below-ground carbon loss due to vegetative cover change between years t and t+1, BGloss,.,, , ; [tonnes CO,.]:
BGloss,..,; ;= f(FFIBS,, FFIBS,,, )

Greenhouse gas emissions rate from wetland processes for year t, GHGflux, ; [tonnes CO,, / yr]:
GHGflux,, = f(FFIBS, )

Greenhouse gas emissions from land/cover change processes from year t to t+1, GHGchange,.,,, ; [tonnes CO,]:
GHGchange,.,, ;= f(FFIBS,, FFIBS,,, ;)
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