Accelerating Elevation Gain Indicates Land Loss Associated with Tidal Erosion at CRMS sites

Louisiana's Coastwide Reference Monitoring System (CRMS)

CRMS Monitoring Station Types

Most CRMS sites see Surface Elevation Gain

Landloss Continues

CRMS Land Change Groups: Hierarchical clustering informed by satellite derived trends (1985-2020) and CRMS 1 km spatial analyses through 2021 (post Ida).

- Continuous landloss is limited to lower Deltaic Plain tidal marshes.
- >60% of sites are "Stable"

Rapid Erosion - High Elevation Gain + Landloss - BA Basin CRMS0174

buried in sediment

Delta Scale Elevation Gain (3.8 cm/yr)

2017 – Due to very high sediment deposition, rod extended and collar raised

Assessed Relationship between Land Change, Elevation Change, and Elevation Change Acceleration Feelal ISSUE: WETLAND ELEVATION DYNAMICS

Inputs:

- Data from all CRMS Tidal Deltaic Plain sites (n=160)
- Elevation Change Rates (mm yr ⁻¹) 2008 to 2021
 - trimmed to last vegetated date
- Elevation Acceleration Rate (mm yr -2)
 - 1st derivative of elevation change
- Land Change between 2008 to 2018
- Matrix values from CRMS land change data
 - sum Oscillating Land
- ID'd all sites that lost all land pre Ida (n=10)

Tidal Amplitude

Spatial

Final Portraits – Last Year with Vegetation

COASTWIDE REFEREN

Final Portraits - Open Water

ON AUTHORITY / COASTWIDE REFE

CRMS0376 2021

Eroding Surfaces

CRMS0302 Soil surface 2014

- Note shell hash and hearty stems

CRMS0302 Soil surface 2015Note exposed roots and broken stems

Land Change Classification

- Identified sites that had lost all vegetation pre Ida (n=10 sites; red triangles).
 - Most had tidal amplitude > 0.7'; outlier in Breton Sound
- Classified sites as Gaining Land, Losing Land or Oscillating using 2008 and 2018 USGS spatial analyses.
- Explored relationships between elevation gain, acceleration, and land change.

Land Change, Elevation Change and Elevation Change

- **1- Most Vulnerable to Erosion**: Landloss with accelerating elevation gain (20%)
- 2- Vulnerable to Erosion: Landloss with elevation gain (20%)
- **3- Vulnerable to Drowning:** Landloss with elevation loss (<5%)

Vulnerability to Erosion Classified

Land Loss with Accelerating Elevation Gain

Map Class

Groups Losing Land

Groups Gaining Land

Oscillating Groups

Map Class

- ▲ All land lost pre Ida
- ◆ Most Vulnerable to Erosion Accelerating Elevation Gain + Landloss
- Vulnerable to Erosion Elevation Gain + Landloss
- Vulnerable to Drowning Elevation Loss + Landloss
- Changing Elevation Gain + Oscillating Land
- Changing Fast Accelerating Elevation Gain + Oscillating Land
- Recovery Land Gain + Slowing Elevation Loss
- Land Building Elevation Gain + Land Gain
 - Elevation Change Rates require land change context for interpretation.
 - Oscillating sites in fresh, deltaic environments where land gain has been observed might also be building land.
 - Oscillating sites in saline, erosive environments where land loss has been observed are probably beginning to erode.

Mat Detachment and Landloss - TV Basin Intermediate Marsh

- The marsh surface at CRMS0545 was observed to detach (began to float) in 2017.
- Land remained stable.
- The floating vegetation was removed by H. Barry in 2019 and hasn't recovered.
- This can also be characterized as accelerating elevation gain with landloss though it is not tidal erosion.
- Mat detachment and related vulnerability contributes to landloss during hurricanes.
- Shallow expansion contributes to elevation gain and is observed more frequently in high water years.

Final Thoughts

- Since 2005, ongoing Deltaic Plain landloss has been due to tidal erosion and hurricane damage.
- Most CRMS sites are gaining elevation and there are multiple pathways to elevation gain.
- A sudden increase in elevation gain outside of an active delta is cause for concern.
 - Could be due to an advancing shoreline.
 - Could also indicate shallow expansion and mat detachment.
 - Landscape trends can help interpret change.
- We may be able to restore more coastal area with erosion control techniques than previously assumed.
- The CRMS dataset is replete with examples of ecosystem feedback.
 - Increasing sedimentation with rising sea level
 - Elevation gain from within the mat in response to increased inundation (shallow expansion).
 - Ecosystem resilience despite increasing sea level

CONNECT WITH US!

@LouisianaCPRA

